Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Cureus ; 16(3): e56241, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38618299

RESUMO

This study compared magnetic resonance imaging (MRI) findings of postmortem brain specimens with neuropathological findings to evaluate the value of postmortem MRI. Postmortem MRI was performed on five formalin-fixed whole brains with malignant tumors. Postmortem T2-weighted images detected all neuropathological abnormalities as high-signal regions but also showed histological tumor invasion in areas without edema. Tumor lesions with high necrosis and edema showed high signal intensity on T2-weighted images; in three cases, lesion enlargement was detected on the final prenatal imaging and postmortem MRI. Disease progression immediately before death may have contributed to this difference. In conclusion, the correlation between MRI and neuropathological findings facilitates understanding of the mechanisms responsible for MRI abnormalities. Increased free water due to edema, necrosis, and brain tissue injury can explain the increased signal intensity observed on T2-weighted images. Postmortem MRI may contribute to effective pathology by identifying subtle abnormalities prior to brain dissection.

2.
Allergol Int ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38594175

RESUMO

Eosinophilic inflammation is primarily characterized by type 2 immune responses against parasitic organisms. In the contemporary human being especially in developed countries, eosinophilic inflammation is strongly associated with allergic/sterile inflammation, and constitutes an undesired immune reaction. This situation is in stark contrast to neutrophilic inflammation, which is indispensable for the host defense against bacterial infections. Among eosinophilic inflammatory disorders, massive accumulation of eosinophils within mucus is observed in certain cases, and is often linked to the distinctive clinical finding of mucus with high viscosity. Eosinophilic mucus is found in a variety of diseases, including chronic allergic keratoconjunctivitis, chronic rhinosinusitis encompassing allergic fungal sinusitis, eosinophilic otitis media, eosinophilic sialodochitis, allergic bronchopulmonary aspergillosis/mycosis, eosinophilic plastic bronchitis, and eosinophilic asthma. In these pathological conditions, chronic inflammation and tissue remodeling coupled with irreversible organ damage due to persistent adhesion of toxic substances and luminal obstruction may impose a significant burden on the body. Eosinophils aggregate in the hyperconcentrated mucus together with cell-derived crystals, macromolecules, and polymers, thereby affecting the biophysical properties of the mucus. This review focuses on the clinically significant challenges of mucus and discusses the consequences of activated eosinophils on the mucosal surface that impact mucus and persistent inflammation.

3.
Nature ; 627(8005): 839-846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509363

RESUMO

The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice. We combine these with imaging of myelopoiesis1 to define the anatomy of normal and stress haematopoiesis. In the steady state, across the skeleton, single stem cells and multipotent progenitors distribute through the marrow enriched near megakaryocytes. Lineage-committed progenitors are recruited to blood vessels, where they contribute to lineage-specific microanatomical structures composed of progenitors and immature cells, which function as the production sites for each major blood lineage. This overall anatomy is resilient to insults, as it was maintained after haemorrhage, systemic bacterial infection and granulocyte colony-stimulating factor (G-CSF) treatment, and during ageing. Production sites enable haematopoietic plasticity as they differentially and selectively modulate their numbers and output in response to insults. We found that stress responses are variable across the skeleton: the tibia and the sternum respond in opposite ways to G-CSF, and the skull does not increase erythropoiesis after haemorrhage. Our studies enable in situ analyses of haematopoiesis, define the anatomy of normal and stress responses, identify discrete microanatomical production sites that confer plasticity to haematopoiesis, and uncover unprecedented heterogeneity of stress responses across the skeleton.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Estresse Fisiológico , Animais , Feminino , Masculino , Camundongos , Envelhecimento/fisiologia , Infecções Bacterianas/patologia , Infecções Bacterianas/fisiopatologia , Vasos Sanguíneos/citologia , Linhagem da Célula , Eritropoese , Fator Estimulador de Colônias de Granulócitos/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemorragia/patologia , Hemorragia/fisiopatologia , Linfopoese , Megacariócitos/citologia , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Mielopoese , Crânio/irrigação sanguínea , Crânio/patologia , Crânio/fisiopatologia , Esterno/irrigação sanguínea , Esterno/citologia , Esterno/metabolismo , Estresse Fisiológico/fisiologia , Tíbia/irrigação sanguínea , Tíbia/citologia , Tíbia/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38502433

RESUMO

Cellular traction forces are contractile forces that depend on the material/substrate stiffness and play essential roles in sensing mechanical environments and regulating cell morphology and function. Traction forces are primarily generated by the actin cytoskeleton and transmitted to the substrate through focal adhesions. The cell nucleus is also believed to be involved in the regulation of this type of force; however, the role of the nucleus in cellular traction forces remains unclear. In this study, we explored the effects of nucleus-actin filament coupling on cellular traction forces in human dermal fibroblasts cultured on substrates with varying stiffness (5, 15, and 48 kPa). To investigate these effects, we transfected the cells with a dominant-negative Klarsicht/ANC-1/Syne homology (DN-KASH) protein that was designed to displace endogenous linker proteins and disrupt nucleus-actin cytoskeleton connections. The force that exists between the cytoskeleton and the nucleus (nuclear tension) was also evaluated with a fluorescence resonance energy transfer (FRET)-based tension sensor. We observed a biphasic change in cellular traction forces with a peak at 15 kPa, regardless of DN-KASH expression, that was inversely correlated with the nuclear tension. In addition, the relative magnitude and distribution of traction forces in nontreated wild-type cells were similar across different stiffness conditions, while DN-KASH-transfected cells exhibited a different distribution pattern that was impacted by the substrate stiffness. These results suggest that the nucleus-actin filament coupling play a homeostatic role by maintaining the relative magnitude of cellular traction forces in fibroblasts under different stiffness conditions.

5.
Cell Stem Cell ; 31(3): 359-377.e10, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458178

RESUMO

Mitochondrial fatty acid oxidation (FAO) is essential for hematopoietic stem cell (HSC) self-renewal; however, the mechanism by which mitochondrial metabolism controls HSC fate remains unknown. Here, we show that within the hematopoietic lineage, HSCs have the largest mitochondrial NADPH pools, which are required for proper HSC cell fate and homeostasis. Bioinformatic analysis of the HSC transcriptome, biochemical assays, and genetic inactivation of FAO all indicate that FAO-generated NADPH fuels cholesterol synthesis in HSCs. Interference with FAO disturbs the segregation of mitochondrial NADPH toward corresponding daughter cells upon single HSC division. Importantly, we have found that the FAO-NADPH-cholesterol axis drives extracellular vesicle (EV) biogenesis and release in HSCs, while inhibition of EV signaling impairs HSC self-renewal. These data reveal the existence of a mitochondrial NADPH-cholesterol axis for EV biogenesis that is required for hematopoietic homeostasis and highlight the non-stochastic nature of HSC fate determination.


Assuntos
Vesículas Extracelulares , Células-Tronco Hematopoéticas , NADP/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular/fisiologia , Autorrenovação Celular
6.
Foods ; 13(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338542

RESUMO

Food allergies are a significant health issue worldwide. In many countries, labeling of primary allergens in food products has been made mandatory to ensure consumer safety. In food manufacturing settings, the lateral flow immunoassay (LFI)-based on antigen-antibody reactions-is a rapid and accurate method for allergen testing and is widely used. Peptide arrays are tools that enable the synthesis of peptides of any sequence on a substrate and high-throughput analysis of their interactions with chemicals. This study aimed to investigate a new application of peptide arrays in the field of food technology, particularly in the development of antibodies for food allergen testing. First, monoclonal antibodies against hen egg ovalbumin, a major food allergen, were produced. Then, using a peptide array, the epitope and specificity of the antibodies were comprehensively and precisely analyzed. Finally, an LFI kit incorporating the antibodies demonstrated both high specificity and detection sensitivity for food allergen testing. These findings indicate that peptide arrays are valuable tools in the development of antibodies for food allergen testing, ensuring reliability and accuracy at the molecular level.

7.
ACS Omega ; 8(45): 43118-43129, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024702

RESUMO

Low-temperature-induced fatty acid desaturation is highly conserved in animals, plants, and bacteria. Allyl isothiocyanate (AITC) is an agonist of the transient receptor potential ankyrin 1 (TRPA1), which is activated by various chemophysiological stimuli, including low temperature. However, whether AITC induces fatty acid desaturation remains unknown. We showed here that AITC increased levels of glycerophospholipids (GP) esterified with unsaturated fatty acids, especially docosahexaenoic acid (DHA) in TRPA1-expressing HEK cells. Additionally, GP-DHA including phosphatidylcholine (18:0/22:6) and phosphatidylethanolamine (18:0/22:6) was increased in the brain and liver of AITC-administered mice. Moreover, intragastrical injection of AITC in ovariectomized (OVX) female C57BL/6J mice dose-dependently shortened the Δlatency time determined by the Morris water maze test, indicating AITC ameliorated the cognitive function decline in these mice. Thus, the oral administration of AITC maintains GP-DHA in the liver and brain, proving to be a potential strategy for preventing cognitive decline.

8.
Foods ; 12(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37509844

RESUMO

The aim of this study is to provide a new perspective on the development of masking agents by examining the application of their time-series sensory profiles. The analysis of the relationship between 14 time-intensity (TI) parameters and the beany flavor masking ability of 100 flavoring materials indicate that the values of AreaInc, DurDec, and AreaDec, TI parameters related to the flavor release in the increasing and decreasing phases, were significantly higher in the top 10 masking score materials than in the bottom 10 materials. In addition to individual analysis, machine learning analysis, which can derive complex rules from large amounts of data, was performed. Machine learning-based principal component analysis and cluster analysis of the flavoring materials presented AreaInc and AreaDec as TI parameters contributing to the classification of flavor materials and their masking ability. AreaDec was suggested to be particularly important for the beany flavor masking in the two different analyses: an effective masking can be achieved by focusing on the TI profiles of flavor materials. This study proposed that time-series profiles, which are mainly used for the understanding of the sensory characteristics of foods, can be applied to the development of masking agents.

9.
Sci Rep ; 13(1): 11627, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468499

RESUMO

Nanodisc technology has dramatically advanced the analysis of molecular interactions for membrane proteins. A nanodisc is designed as a vehicle for membrane proteins that provide a native-like phospholipid environment and better thermostability in a detergent-free buffer. This enables the determination of the thermodynamic and kinetic parameters of small molecule binding by surface plasmon resonance. In this study, we generated a nanodisc specific anti-MSP (membrane scaffold protein) monoclonal antibody biND5 for molecular interaction analysis of nanodiscs. The antibody, biND5 bound to various types of nanodiscs with sub-nanomolar to nanomolar affinity. Epitope mapping analysis revealed specific recognition of 8 amino acid residues in the exposed helix-4 structure of MSP. Further, we performed kinetics binding analysis between adenosine A2a receptor reconstituted nanodiscs and small molecule antagonist ZM241385 using biND5 immobilized sensor chips. These results show that biND5 facilitates the molecular interaction kinetics analysis of membrane proteins substituted in nanodiscs.


Assuntos
Proteínas de Membrana , Nanoestruturas , Proteínas de Membrana/metabolismo , Bicamadas Lipídicas/química , Cinética , Nanoestruturas/química , Fosfolipídeos/metabolismo
10.
Dev Growth Differ ; 65(8): 461-469, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37452641

RESUMO

The enteric nervous system (ENS) regulates gut functions independently from the central nervous system (CNS) by its highly autonomic neural circuit that integrates diverse neuronal subtypes. Although several transcription factors are shown to be necessary for the generation of some enteric neuron subtypes, the mechanisms underlying neuronal subtype specification in the ENS remain elusive. In this study, we examined the biological function of Polycomb group RING finger protein 1 (PCGF1), one of the epigenetic modifiers, in the development and differentiation of the ENS by disrupting the Pcgf1 gene selectively in the autonomic-lineage cells. Although ENS precursor migration and enteric neurogenesis were largely unaffected, neuronal differentiation was impaired in the Pcgf1-deficient mice, with the numbers of neurons expressing somatostatin (Sst+ ) decreased in multiple gut regions. Notably, the decrease in Sst+ neurons was associated with the corresponding increase in calbindin+ neurons in the proximal colon. These findings suggest that neuronal subtype conversion may occur in the absence of PCGF1, and that epigenetic mechanism is primarily involved in specification of some enteric neuron subtypes.


Assuntos
Sistema Nervoso Entérico , Neurônios , Animais , Camundongos , Diferenciação Celular/genética , Fatores de Transcrição/metabolismo , Sistema Nervoso Entérico/metabolismo , Epigênese Genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo
11.
Exp Hematol ; 124: 45-55.e2, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37225048

RESUMO

TET2 is a member of the Ten-eleven translocation (Tet) family of DNA dioxygenases that regulate gene expression by promoting DNA demethylation (enzymatic activity) and partnering with chromatin regulatory complexes (nonenzymatic functions). TET2 is highly expressed in the hematopoietic lineage, where its molecular functions are the subject of continuous investigations because of the prevalence of TET2 mutations in hematologic malignancies. Previously, we have implicated Tet2 catalytic and noncatalytic functions in the regulation of myeloid and lymphoid lineages, respectively. However, the impact of these functions of Tet2 on hematopoiesis as the bone marrow ages remains unclear. Here, we conducted comparative transplantations and transcriptomic analyses of 3-, 6-, 9-, and 12-month-old Tet2 catalytic mutant (Mut) and knockout (KO) bone marrow. Tet2 Mut bone marrow of all ages exclusively caused hematopoietic disorders of the myeloid lineage. In contrast, young Tet2 KO bone marrow developed both lymphoid and myeloid diseases, whereas older Tet2 KO bone marrow predominantly elicited myeloid disorders with shorter latency than age-matched Tet2 Mut bone marrow. We identified robust gene dysregulation in Tet2 KO Lin- cells at 6 months that involved lymphoma and myelodysplastic syndrome and/or leukemia-causing genes, many of which were hypermethylated early in life. There was a shift from lymphoid to myeloid gene deregulation in Tet2 KO Lin- cells with age, underpinning the higher incidence of myeloid diseases. These findings expand on the dynamic regulation of bone marrow by Tet2 and show that its catalytic-dependent and -independent roles have distinct impacts on myeloid and lymphoid lineages with age.


Assuntos
Dioxigenases , Doenças Hematológicas , Neoplasias Hematológicas , Síndromes Mielodisplásicas , Humanos , Lactente , Medula Óssea/metabolismo , Neoplasias Hematológicas/genética , Síndromes Mielodisplásicas/metabolismo , Hematopoese/genética , Doenças Hematológicas/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Mutação
12.
Acute Med Surg ; 10(1): e832, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051092

RESUMO

Background: Neurofibromatosis type I is rarely associated with vascular abnormalities. Here, we report a case of rapid airway stenosis caused by a ruptured occipital artery that was treated with surgical airway management. Case Presentation: A 40-year-old woman, with no medical history, presented with a chief complaint of a sudden neck pain on the left side. She had a prominent mass in the outer left side of the neck. After arrival at the emergency room, the patient complained of severe dyspnea and experienced a rapid drop in oxygen saturation. Supplemental ventilation was ineffective, and tracheal intubation was attempted; however, laryngeal expansion could not be observed because of the enlarged cervical mass. Therefore, to manage the surgical airway, a cricothyrotomy was first carried out, which resulted in an immediate increase in oxygen saturation. Two percutaneous embolizations and one surgical procedure were carried out, and the patient was discharged without any complications. Conclusion: For a sudden onset cervical mass, airway management should be undertaken, keeping in mind the possibility of worsening rapid airway narrowing due to bleeding.

13.
Cell Mol Gastroenterol Hepatol ; 15(6): 1505-1524, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36521661

RESUMO

BACKGROUND & AIMS: Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of the enteric nervous system (ENS). HSCR potentially involves multiple gene aberrations and displays complex patterns of inheritance. Mutations of the RET gene, encoding the RET receptor tyrosine kinase, play a central role in the pathogenesis of HSCR. Although a wide variety of coding RET mutations have been identified, their pathogenetic significance in vivo has remained largely unclear. METHODS: We introduced a HSCR-associated RET missense mutation, RET(S811F), into the corresponding region (S812) of the mouse Ret gene. Pathogenetic impact of Ret(S812F) was assessed by histologic and functional analyses of the ENS and by biochemical analyses. Interactions of the Ret(S812F) allele with HSCR susceptibility genes, the RET9 allele and the Ednrb gene, were examined by genetic crossing in mice. RESULTS: RetS812F/+ mice displayed intestinal aganglionosis (incidence, 50%) or hypoganglionosis (50%), impaired differentiation of enteric neurons, defecation deficits, and increased lethality. Biochemical analyses revealed that Ret(S811F) protein was not only kinase-deficient but also abrogated function of wild-type RET in trans. Moreover, the Ret(S812F) allele interacted with other HSCR susceptibility genes and caused intestinal aganglionosis with full penetrance. CONCLUSIONS: This study demonstrates that a single RET missense mutation alone induces intestinal aganglionosis via a dominant-negative mechanism. The RetS812F/+ mice model HSCR displays dominant inheritance with incomplete penetrance and serves as a valuable platform for better understanding of the pathogenetic mechanism of HSCR caused by coding RET mutations.


Assuntos
Sistema Nervoso Entérico , Doença de Hirschsprung , Animais , Camundongos , Doença de Hirschsprung/genética , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Mutação/genética , Neurônios/metabolismo , Sistema Nervoso Entérico/metabolismo
14.
Cell Death Differ ; 30(2): 429-441, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36450825

RESUMO

Uncontrolled inflammatory response arising from the tumor microenvironment (TME) significantly contributes to cancer progression, prompting an investigation and careful evaluation of counter-regulatory mechanisms. We identified a trimeric complex at the mitochondria-associated membranes (MAMs), in which the purinergic P2X7 receptor - NLRP3 inflammasome liaison is fine-tuned by the tumor suppressor PML. PML downregulation drives an exacerbated immune response due to a loss of P2X7R-NLRP3 restraint that boosts tumor growth. PML mislocalization from MAMs elicits an uncontrolled NLRP3 activation, and consequent cytokines blast fueling cancer and worsening the tumor prognosis in different human cancers. New mechanistic insights are provided for the PML-P2X7R-NLRP3 axis to govern the TME in human carcinogenesis, fostering new targeted therapeutic approaches.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína da Leucemia Promielocítica , Receptores Purinérgicos P2X7 , Microambiente Tumoral , Humanos , Citocinas , Inflamassomos , Mitocôndrias , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptores Purinérgicos P2X7/metabolismo , Proteína da Leucemia Promielocítica/metabolismo
15.
J Toxicol Sci ; 47(11): 493-501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36328539

RESUMO

Lead (Pb) is an environmental pollutant that adversely affects various organs in the human body and is a well-known risk factor for cardiovascular diseases, caused by the dysfunction of vascular endothelial cells that cover the luminal surface of the blood vessels. The Zrt- and Irt-like related protein (ZIP) transporter ZIP8 is one of the primary importers of zinc, iron, manganese, and cadmium, and its expression appears to be important for the metabolism of these metals. In the present study, we investigated the influence of ZIP8 on Pb-induced cytotoxicity in vascular endothelial cells, induction of ZIP8 expression by Pb, and its mechanism of action in vascular endothelial cells. The study revealed the following: (1) Pb cytotoxicity in vascular endothelial cells was potentiated by the knockdown of ZIP8, but the intracellular accumulation of Pb in the cells remain unaffected; (2) Pb induced the expression of ZIP8; (3) the induction of ZIP8 expression by Pb was mediated by nuclear factor (NF)-κB signaling pathway; and (4) Pb activated p38, mitogen-activated protein kinase (MAPK), and c-jun N-terminal kinase (JNK), but the activation of these MAPKs was not involved in the induction of ZIP8 by Pb. Therefore, the study shows that Pb induces the expression of endothelial ZIP8 and this induction appears to be involved in the protection against Pb cytotoxicity by intracellular Pb accumulation independent mechanisms.


Assuntos
Proteínas de Transporte de Cátions , NF-kappa B , Humanos , NF-kappa B/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Células Endoteliais/metabolismo , Chumbo/toxicidade , Transdução de Sinais , Células Cultivadas
16.
Stem Cell Reports ; 17(7): 1509-1535, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35830837

RESUMO

In this retrospective, we review the two research topics that formed the basis of the outstanding career of Dr. Paul S. Frenette. In the first part, we focus on sickle cell disease (SCD). The defining feature of SCD is polymerization of the deoxygenated mutant hemoglobin, which leads to a vicious cycle of hemolysis and vaso-occlusion. We survey important discoveries in SCD pathophysiology that have led to recent advances in treatment of SCD. The second part focuses on the hematopoietic stem cell (HSC) niche, the complex microenvironment within the bone marrow that controls HSC function and homeostasis. We detail the cells that constitute this niche, and the factors that these cells use to exert control over hematopoiesis. Here, we trace the scientific paths of Dr. Frenette, highlight key aspects of his research, and identify his most important scientific contributions in both fields.


Assuntos
Anemia Falciforme , Hematopoese , Anemia Falciforme/terapia , Medula Óssea/metabolismo , Humanos , Estudos Retrospectivos , Nicho de Células-Tronco
17.
Hemasphere ; 6(7): e740, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35785147

RESUMO

Cellular metabolism is a key regulator of hematopoietic stem cell (HSC) maintenance. HSCs rely on anaerobic glycolysis for energy production to minimize the production of reactive oxygen species and shift toward mitochondrial oxidative phosphorylation upon differentiation. However, increasing evidence has shown that HSCs still maintain a certain level of mitochondrial activity in quiescence, and exhibit high mitochondrial membrane potential, which both support proper HSC function. Since glycolysis and the tricarboxylic acid (TCA) cycle are not directly connected in HSCs, other nutrient pathways, such as amino acid and fatty acid metabolism, generate acetyl-CoA and provide it to the TCA cycle. In this review, we discuss recent insights into the regulatory roles of cellular metabolism in HSCs. Understanding the metabolic requirements of healthy HSCs is of critical importance to the development of new therapies for hematological disorders.

18.
Immunometabolism ; 4(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465142

RESUMO

Hematopoietic homeostasis depends on the close regulation of hematopoietic stem cell (HSC) activity in the bone marrow. Quiescence and activation in response to stress, among other changes in state, are mediated by shifts in HSC metabolic activity. Although HSC steady-state metabolism is well established, the mechanisms driving HSC activation, proliferation, and differentiation in response to stress remain poorly understood. Here we discuss a study by Mistry et al. that describes a novel metabolic mechanism that fuels HSC activation and expansion. The authors show that to meet their metabolic needs in response to infection, hematopoietic stem and progenitor cells uptake free fatty acids from their microenvironment via CD36 to fuel fatty acid oxidation. These exciting findings suggest that in the context of infection, HSCs undergo a metabolic shift toward fatty acid metabolism that drives emergency hematopoiesis and raise questions about the role of the microenvironment in this process.

19.
Sci Adv ; 8(9): eabm3470, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235365

RESUMO

Ten-eleven translocation (Tet) enzymes promote DNA demethylation by oxidizing 5-methylcytosine. They are expressed during development and are essential for mouse gastrulation. However, their postgastrulation functions are not well established. We find that global or endothelial-specific loss of all three Tet enzymes immediately after gastrulation leads to reduced number of hematopoietic stem and progenitor cells (HSPCs) and lethality in mid-gestation mouse embryos. This is due to defects in specification of HSPCs from endothelial cells (ECs) that compromise primitive and definitive hematopoiesis. Mechanistically, loss of Tet enzymes in ECs led to hypermethylation and down-regulation of NFκB1 and master hematopoietic transcription factors (Gata1/2, Runx1, and Gfi1b). Restoring Tet catalytic activity or overexpression of these factors in Tet-deficient ECs rescued hematopoiesis defects. This establishes Tet enzymes as activators of hematopoiesis programs in ECs for specification of HSPCs during embryogenesis, which is distinct from their roles in adult hematopoiesis, with implications in deriving HSPCs from pluripotent cells.


Assuntos
Dioxigenases , Animais , Diferenciação Celular/genética , Desmetilação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Desenvolvimento Embrionário/genética , Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mamíferos/metabolismo , Camundongos
20.
EMBO Rep ; 23(5): e54262, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35229971

RESUMO

Myelodysplastic syndrome (MDS) is characterized by ineffective hematopoiesis with morphologic dysplasia and a propensity to transform into overt acute myeloid leukemia (AML). Our analysis of two cohorts of 20 MDS and 49 AML with multi-lineage dysplasia patients shows a reduction in Nucleophosmin 1 (NPM1) expression in 70% and 90% of cases, respectively. A mouse model of Npm1 conditional knockout (cKO) in hematopoietic cells reveals that Npm1 loss causes premature aging of hematopoietic stem cells (HSCs). Mitochondrial activation in Npm1-deficient HSCs leads to aberrant activation of the NLRP3 inflammasome, which correlates with a developing MDS-like phenotype. Npm1 cKO mice exhibit shortened survival times, and expansion of both the intra- and extra-medullary myeloid populations, while evoking a p53-dependent response. After transfer into a p53 mutant background, the resulting Npm1/p53 double KO mice develop fatal leukemia within 6 months. Our findings identify NPM1 as a regulator of HSC aging and inflammation and highlight the role of p53 in MDS progression to leukemia.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Envelhecimento/genética , Animais , Células-Tronco Hematopoéticas/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Mutação , Síndromes Mielodisplásicas/complicações , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...